Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
1.
Buildings ; 13(5), 2023.
Article in English | Scopus | ID: covidwho-20245006

ABSTRACT

With frequent outbreaks of COVID-19, the rapid and effective construction of large-space buildings into Fangcang shelter hospitals has gradually become one of the effective means to control the epidemic. Reasonable design of the ventilation system of the Fangcang shelter hospital can optimize the indoor airflow organization, so that the internal environment can meet the comfort of patients and at the same time can effectively discharge pollutants, which is particularly important for the establishment of the Fangcang shelter hospital. In this paper, through the reconstruction of a large-space gymnasium, CFD software is used to simulate the living environment and pollutant emission efficiency of the reconstructed Fangcang shelter hospital in summer under different air supply temperatures, air supply heights and exhaust air volume parameters. The results show that when the air supply parameters are set to an air supply height of 4.5 m, an air supply temperature of 18 °C, and an exhaust air volume of a single bed of 150 m3/h, the thermal comfort can reach level I, and the ventilation efficiency for pollutants can reach 69.6%. In addition, the ventilation efficiency is 70.1% and 70.3% when the exhaust air volume of a single bed is continuously increased to 200 and 250 m3/h, which can no longer effectively improve the pollutant emission and will cause an uncomfortable blowing feeling to patients. © 2023 by the authors.

2.
ERS Monograph ; 2022(98):48-58, 2022.
Article in English | EMBASE | ID: covidwho-20238378

ABSTRACT

Air pollution, climate and population health are closely related in terms of their impacts on respiratory health and lung cancer. Air pollutants contribute to the exacerbation of chronic respiratory problems such as COPD and asthma. Air pollutants are also toxic and carcinogenic, initiating and promoting lung cancer development. Climate change in relation to environmental pollution affects the geographical distribution of food supply and diseases such as pneumonia in adults and children. The threat of air pollution, and hence global warming and climate changes, and their effects on population and respiratory health, is an imminent threat to the world and deserves immediate and sustainable combating strategies and efforts. The goals are to increase public awareness and engagement in action, with alignment of international collaboration and policy, and with steering towards further research. Now is the prime time for international collaborative efforts on planning and actions to fight air pollution and climate change before it is too late.Copyright © ERS 2021.

3.
Atmosphere ; 14(5), 2023.
Article in English | Web of Science | ID: covidwho-20237776

ABSTRACT

Evidence suggests an association between air pollutant exposure and worse outcomes for respiratory viral diseases, like COVID-19. However, does breathing polluted air over many years affect the susceptibility to SARS-CoV-2 infection or severity of COVID-19 disease, and how intense are these effects? As climate change intensifies, air pollutant levels may rise, which might further affect the burden of respiratory viral diseases. We assessed the effect of increasing exposure to PM2.5 (particulate matter = 2.5 microns in diameter) on SARS-CoV-2 susceptibility or COVID-19 severity and projected the impact on infections and hospitalisations over two years. Simulations in a hypothetical, representative population show that if exposure affects severity, then hospital admissions are projected to increase by 5-10% for a one-unit exposure increase. However, if exposure affects susceptibility, then infections would increase with the potential for onward transmission and hospital admissions could increase by over 60%. Implications of this study highlight the importance of considering this potential additional health and health system burden as part of strategic planning to mitigate and respond to changing air pollution levels. It is also important to better understand at which point PM2.5 exposure affects SARS-CoV-2 infection through to COVID-19 disease progression, to enable improved protection and better support of those most vulnerable.

4.
Atmospheric Environment ; 306 (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-20237416

ABSTRACT

The additional impact of emission-reduction measures in North China (NC) during autumn and winter on the air quality of downwind regions is an interesting but less addressed topic. The mass concentrations of routine air pollutants, the chemical compositions, and sources of fine particles (PM2.5) for January 2018, 2019, and 2020 at a megacity of Central China were identified, and meteorology-isolated by a machine-learning technique. Their variations were classified according to air mass direction. An unexpectedly sharp increase in emission-related PM2.5 by 22.7% (18.0 mug m-3) and 25.7% (19.4 mug m-3) for air masses from local and NC in 2019 was observed compared to those of 2018. Organic materials exhibited the highest increase in PM2.5 compositions by 6.90 mug m-3 and 6.23 mug m-3 for the air masses from local and NC. PM2.5 source contributions related to emission showed an upsurge from 1.39 mug m-3 (biomass burning) to 24.9 mug m-3 (secondary inorganic aerosol) in 2019 except for industrial processes, while all reduced in 2020. From 2018 to 2020, the emission-related contribution of coal combustion to PM2.5 increased from 10.0% to 19.0% for air masses from the local area. To support the priority natural gas quotas in northern China, additional coal in cities of southern China was consumed, raising related emissions from transportation activities and road dust in urban regions, as well as additional biofuel consumption in suburban or rural regions. All these activities could explain the increased primary PM2.5 and related precursor NO2. This study gave substantial evidence of air pollution control measures impacting the downwind regions and promote the necessity of air pollution joint control across the administration.Copyright © 2023 Elsevier Ltd

5.
Environ Sci Pollut Res Int ; 30(33): 80655-80675, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-20243708

ABSTRACT

Taxis pose a higher threat to global climate change and human health through air emissions. However, the evidence on this topic is scarce, especially, in developing countries. Therefore, this study conducted estimation of fuel consumption (FC) and emission inventories on Tabriz taxi fleet (TTF), Iran. A structured questionnaire to obtain operational data of TTF, municipality organizations, and literature review were used as data sources. Then modeling was used to estimate fuel consumption ratio (FCR), emission factors (EFs), annual FC, and emissions of TTF using uncertainty analysis. Also, the impact of COVID-19 pandemic period was considered on the studied parameters. The results showed that TTF have high FCRs of 18.68 L/100 km (95% CI=17.67-19.69 L/100 km), which are not affected by age or mileage of taxis, significantly. The estimated EFs for TTF are higher than Euro standards, but the differences are not significant. However, it is critical as can be an indication of inefficiency of periodic regulatory technical inspection tests for TTF. COVID-19 pandemic caused significant decrease in annual total FC and emissions (9.03-15.6%), but significant increase in EFs of per-passenger-kilometer traveled (47.9-57.3%). Annual vehicle-kilometer-traveled by TTF and the estimated EFs for gasoline-compressed natural gas bi-fueled TTF are the main influential parameters in the variability of annual FC and emission levels. More studies on sustainable FC and emissions mitigation strategies are needed for TTF.


Subject(s)
Air Pollutants , COVID-19 , Humans , Air Pollutants/analysis , Vehicle Emissions/analysis , Iran , Pandemics , Uncertainty , Gasoline/analysis , Motor Vehicles , Environmental Monitoring/methods
6.
Huan Jing Ke Xue ; 44(5): 2430-2440, 2023 May 08.
Article in Chinese | MEDLINE | ID: covidwho-20237414

ABSTRACT

To investigate the change characteristics of secondary inorganic ions in PM2.5 at different pollution stages before and after COVID-19, the online monitoring of winter meteorological and atmospheric pollutant concentrations in Zhengzhou from December 15, 2019 to February 15, 2020 was conducted using a high-resolution (1 h) online instrument. This study analyzed the causes of the haze process of COVID-19, the diurnal variation characteristics of air pollutants, and the distribution characteristics of air pollutants at different stages of haze.The results showed that Zhengzhou was mainly controlled by the high-pressure ridge during the haze process, and the weather situation was stable, which was conducive to the accumulation of air pollutants. SNA was the main component of water-soluble ions, accounting for more than 90%. Home isolation measures during COVID-19 had different impacts on the distribution characteristics of air pollutants in different haze stages. After COVID-19, the concentration of PM2.5 in the clean, occurrence, and dissipation stages increased compared with that before COVID-19 but significantly decreased in the development stage. The home isolation policy significantly reduced the high value of PM2.5. The concentrations of NO2, SO2, NH3, and CO were the highest in the haze development stage, showing a trend of first increasing and then decreasing. The concentration of O3 was lowest in the pre-COVID-19 development stage but highest in the post-COVID-19 development stage. The linear correlation between[NH4+]/[SO42-] and[NO3-]/[SO42-] at different time periods before and after COVID-19 was strong, indicating that the home isolation policy of COVID-19 did not change the generation mode of NO3-, and the corresponding reaction was always the main generation mode of NO3-. The correlation between[excess-NH4+] and[NO3-] was high in different periods before COVID-19, and NO3- generation was related to the increase in NH3 or NH4+ in the process of PM2.5 pollution in Zhengzhou.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Humans , Particulate Matter/analysis , Environmental Monitoring/methods , COVID-19/epidemiology , Respiratory Aerosols and Droplets , Air Pollutants/analysis , Air Pollution/analysis , Ions/analysis , Seasons , China/epidemiology
7.
Journal of Environmental and Occupational Medicine ; 39(3):348-352, 2022.
Article in Chinese | EMBASE | ID: covidwho-2324907

ABSTRACT

Novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-COV-2) is spreading rapidly around the world and has become a global pandemic. Meteorological factors have been recognized as one of the critical factors that influence the epidemiology and transmission of infectious diseases. In this context, the World Meteorological Organization and scholars at home and abroad have paid extensive attention to the relationships of environment and meteorology with COVID-19. This paper systematically collected and sorted out relevant domestic and foreign studies, and reviewed the latest research progress on the impact of environmental and meteorological factors on COVID-19, classifying them into typical meteorological factors (such as temperature, humidity, and wind speed), local environmental factors (such as indoor enclosed environment, ventilation, disinfection, and air conditioning), and air pollution. Current research evidence suggests that typical meteorological factors, local environmental factors, and air pollutants are closely related to the transmission of COVID-19. However, the results of different studies are still divergent due to uncertainty about the influencing mechanism, and differences in research areas and methods. This review elucidated the importance of environmental and meteorological factors to the spread of COVID-19, and provided useful implications for the control of further large-scale transmission of COVID-19 and the development of prevention and control strategies under different environmental and meteorological conditions.Copyright © 2022, Shanghai Municipal Center for Disease Control and Prevention. All rights reserved.

8.
Bangladesh Journal of Medical Science ; 22(2):454-456, 2023.
Article in English | EMBASE | ID: covidwho-2326047
9.
WSEAS Transactions on Environment and Development ; 19:151-162, 2023.
Article in English | Scopus | ID: covidwho-2325919

ABSTRACT

An efficient and punctual monitoring of air pollutants is very useful to evaluate and prevent possible threats to human beings' health. Especially in areas where such pollutants are highly concentrated, an accurate collection of data could suggest mitigation actions to be implemented. Moreover, a well-performed data collection could also permit the forecast of future scenarios, in relation to the seasonality of the phenomenon. With a particular focus on COVID pandemic period, several literature works demonstrated a decreasing of pollutant concentrations in air of urban areas, mainly for NOx, while CO and PM10, on the opposite, has been observed to remain still, mainly because of the intensive usage of heating systems by the people forced to stay home (on specific regions). With the present contribution the authors here present an application of Time Series analysis (TSA) approach to pollutants concentration data of two Italian cities during first lockdown (9 march – 18 may 2020), demonstrating the possibility to predict pollutants concentration over time. © 2023, World Scientific and Engineering Academy and Society. All rights reserved.

10.
Frontiers in Environmental Science ; 2023.
Article in English | ProQuest Central | ID: covidwho-2316545

ABSTRACT

How to accelerate the clean use of fossil energy and promote the transformation and upgrading of energy structure is an important challenge commonly faced by countries around the world. In the post-Covid-19 era, the uncertainties faced by countries around the world are increasing and the frequency of policy adjustments in various countries is accelerating. The discharge of pollution by enterprises is significantly impacted by environmental regulatory policies. Under the carbon neutrality goal, the uncertainty of environmental policy caused by multiple political factors can directly influence the decisions made by businesses and residents, in turn, affect their confidence and expectations. However, researchers have given limited attention to measuring the environmental policy uncertainty index (EPUI). In this paper, we select 460 newspapers from the China National Knowledge Infrastructure (CNKI) newspaper database from 2001 to 2016 and use the text analysis method to directly construct China's national, provincial, and prefecture-level EPUI. The results show that China's EPUI has obvious stage characteristics and regional characteristics. By applying the Chinese city-level EPUI to the field of urban pollution reduction, we have obtained an important finding that when urban environmental policy uncertainty increases by 1%, urban industrial sulfur dioxide emission decreases by about 0.145%, and carbon dioxide emission decreases by about 0.053%. We believe that this is due to an increase in environmental policy uncertainty inhibiting the development and scaling of secondary industries.

11.
Journal of Biological Chemistry ; 299(3 Supplement):S399, 2023.
Article in English | EMBASE | ID: covidwho-2315554

ABSTRACT

Breast milk is generally accepted as the perfect source of nutrition for the health and development of infants. It also assists in infant innate and adaptive immunity through many proteins that are decorated with glycans. Examples of these glycoproteins include IgA, IgG, and innate immune lectins. Maternal diet and environmental exposure such as pathogens and pollutants affect human milk composition including its glycoprofile. Despite altered glycosylation can have a consequence on the nursing infant's health and immunity, the current knowledge is still emerging in this area of study. COVID-19 has gained attention in recent years by causing severe morbidity and mortality. Similar to other infectious diseases such as influenza, our lab recently revealed alterations in glycome of plasma and different tissue samples of COVID-19 infected patients. Inspired by these findings, we are interested in disclosing the effect of SARS-CoV-2 on glycosylation of breast milk proteins. Toward this, we performed a large-scale systematic study using our high-throughput lectin microarray analysis technology. We analyzed 132 control samples (breast milk collected pre- COVID) and breast milk from 78 COVID-19 infected mothers. Our data showed there is a 4-fold increase in -2,3 sialic acid on glycoproteins that is associated with SARS-CoV-2 infection in lactating mothers. Lectin pulldown experiments further testified to these findings. Given the significance of -2,3 sialic acid glycan signature in infectious diseases, our finding could provide valuable insight into therapeutic development.Copyright © 2023 The American Society for Biochemistry and Molecular Biology, Inc.

12.
Heliyon ; 9(5): e15787, 2023 May.
Article in English | MEDLINE | ID: covidwho-2311545

ABSTRACT

Since the COVID-19 outbreak, the use of disposable plastics has rapidly increased along with the amount of plastic waste. During fragmentation, microplastics and other chemical substances contained in plastics are released. These then enter humans through food which could be problematic considering their hazardous potential. Polystyrene (PS), which is widely used in disposable containers, releases large amounts of microplastics (MPs), but no studies have investigated the release mechanisms of PS-MPs and simultaneously exposed contaminants. Therefore, in this study, the effects of pH (3, 5, 7, and 9), temperature (20, 50, 80, and 100 °C), and exposure time (2, 4, 6, and 8 h) on MPs release were systematically examined. A quantitative/qualitative study of MPs and styrene monomers was performed using microscopy-equipped Fourier-transformed infrared spectroscopy and gas chromatography-mass spectrometry. The release of PS-MPs (36 items/container) and simultaneously exposed pollutants (SEP), such as ethylene glycol monooleate (EGM), was highest at pH 9, 100 °C, and 6 h, which was proportional to the test temperature and time. Under the same conditions, 2.58 µg/L of styrene monomer migrated to the liquid food simulants. The fragmentation was proceeded by oxidation/hydrolysis and accelerated by increased temperature and exposure time. The strong positive correlation between PS-MPs and SEPs releases at pH and temperature indicates that PS-MPs and SEPs follow the same release process. However, a strongly negative correlation between PS-MPs and styrene monomers at the exposed time shows that styrene migration does not follow the same release process, but does its partition coefficient.

13.
Sustainability (Switzerland) ; 15(7), 2023.
Article in English | Scopus | ID: covidwho-2293490

ABSTRACT

Poor air quality (PAQ) has serious effects on the environment, climate change, and human health. This study investigated the perceived health impacts of PAQ in two cities in Nigeria (Abuja and Enugu), including whether PAQ may have an interaction with COVID-19 infection and intensity. A recent report published in the Lancet has pointed to the complexity of the health care system in Nigeria and a lack of data on disease burden, so the research in this paper took a self-reporting (perceptual) approach to exploring the health impacts of PAQ. The research also sought to explore the main sources of information used by people to inform them about air quality (AQ) and the actions they are likely to take to address PAQ. The results imply that many of the respondents in the two cities perceived their health to be adversely affected by PAQ and that PAQ worsens both the chances of infection and the intensity of COVID-19. Unsurprisingly, older people were found to be more vulnerable to the health impacts of PAQ. Most respondents, especially younger ones, obtained their information on AQ via electronic media (internet, social media) rather than printed media. Respondents considered that the primary action to address PAQ is proper waste management. Paying the government to address PAQ was regarded as the least likely action, although the government was acknowledged as having a key responsibility. © 2023 by the authors.

14.
Desalination and Water Treatment ; 284:72-80, 2023.
Article in English | Scopus | ID: covidwho-2290896

ABSTRACT

Water treatment systems play an essential role in dialysis therapy. The control of bacteriologi-cal water quality is vital to ensure a better quality of hemodialysis patient's life. The current study assessed the microbiological quality of the hemodialysis water system of four hemodialysis centers located in major public health centers in Amman, Jordan (Hemodialysis centers A, B, C, and D). Their water samples were collected monthly from the dialysis machine's water inlet before and during the COVID-19 pandemic between 2018 and 2021. Total heterotrophic bacterial counts (TC), detection of Pseudomonas aeruginosa, and bacterial endotoxin (BE) concentrations were examined. According to international guidelines, most of the TC and BE results were within acceptable levels. However, some points were outside the limits, in addition to Pseudomonas aeruginosa being detected as well. These data indicated that the centers studied should revise the quality control management of their hemodialysis. This research emphasizes the importance of regular monitoring, main-tenance, and development of effective water treatment systems to avoid bacterial growth and the production of biofilms, even in pandemic situations. © 2023 Desalination Publications. All rights reserved.

15.
Sustainability ; 15(8):6867, 2023.
Article in English | ProQuest Central | ID: covidwho-2299051

ABSTRACT

In order to keep the home and occupational environment clean and non-infectious, the consumption of cleaners and disinfectants, including cosmetics, is increasing. Excessive use of these products results in their accumulation in the aquatic environment. Conventional wastewater treatment plants are unable to effectively remove the emergent pollutants, including personal care products. This article is focused on the monitoring of the presence of personal care products in surface waters in two river basins in the Slovak Republic, in terms of the surfactant content. Ecotoxicological evaluation of the selected samples from the monitored river basins was performed by an acute toxicity test using the test organism Daphnia magna. The monitoring results indicate the presence of personal care products in the aquatic environment which poses an ecological and environmental risk. Monitoring in the Hron and Nitra river basins confirmed contamination with the surfactants, to which the measures related to the COVID-19 pandemic contributed. The content of the surfactants in personal care products is significant, and their impact on the aquatic environment is not sufficiently monitored.

16.
Atmospheric Environment ; 302 (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2295206

ABSTRACT

Acid deposition and particulate matter (PM) pollution have declined considerably in China. Although metal(loid) and acid deposition and PM have many common sources, the changes of metal(loid) deposition in China in the recent decade have not been well explored by using long-term monitoring. Therefore, we analyzed the dry and wet deposition of eleven metal(loid)s (including Al, As, Ba, Cd, Cu, Cr, Fe, Mn, Pb, Sr, and Zn) from 2017 to 2021 at Mount Emei, which is adjacent to the most economic-developed region in western China (Sichuan Basin (SCB)). Anthropogenic emissions contributed to over 80% of the annual wet deposition fluxes of metal(loid)s and acids (SO4 2-, NO3 -, and NH4 +) at Mount Emei, and the major source regions were the SCB, the Yunnan-Guizhou Plateau, and Gansu Province. Metal(loid) and acid deposition had similar seasonal variations with higher wet deposition fluxes in summer but higher wet deposition concentrations and dry fluxes in winter. The seasonal variations were partially associated with higher precipitation but lower pH in summer (968 mm and 5.52, respectively) than in winter (47 mm and 4.73, respectively). From 2017 to 2021, metal(loid) deposition did not decline as substantially as acid deposition (5.6%-30.4%). Both the annual total deposition fluxes and concentrations of Cr, Cu, Sr, Ba, and Pb were even higher in 2020-2021 than in 2017-2018. The inter-annual and seasonal changes implied the responses of metal(loid) deposition to anthropogenic emission changes were buffered (e.g., transformation, dilution, and degradation) by precipitation rates, acidity, natural emissions, and chemical reactions in the atmosphere, among others.Copyright © 2023 Elsevier Ltd

17.
Environ Res ; 228: 115900, 2023 07 01.
Article in English | MEDLINE | ID: covidwho-2293135

ABSTRACT

Recent years have seen a lot of interest in transition metal carbides/carbonitrides (MXenes), Which is one of newly proliferating two-dimensional (2D) materials.The advantages and applications of synthesizing MXenes-based biosensing systems are interesting. There is an urgent requirement for synthesis of MXenes. Through foliation, physical adsorption, and interface modification,it has been proposed that many biological disorders are related to genetic mutation. Majority of mutations were discovered to be nucleotide mismatches. Consequently, accurate -nucleotide mismatched discrimination is crucial for both diagnosing and treating diseases. To differentiate between such a sensitivealterations in the DNA duplex, several detection methods, particularly Electrochemical-luminescence (ECL) ones, have really been investigated.Mn+1XnTx is common name for MXenes, a novel family of two-dimensional (2D) transition metal carbides, nitrides, and carbonitrides, where T stands for interface termination units (i.e. = O, OH, and/or F). These electronic characteristics of MXenes may be changed between conductive to semiconducting due to abundant organometallic chemistry.Solid-state ECL sensors predicated on MXene would provide the facile nucleotide detection and convenience for usage with minimal training, mobility and possibly minimal cost.This study emphasizes upcoming requirements and possibilities in this area while describing the accomplishments achieved in the usage and employing of MXenes in the research and development of facile biomarkerdetection and their significance in designing electrochemical sensors. Opportunities are addressed for creating 2D MXene materials sensors and devices with incorporated biomolecule sensing. MXenes Carry out this process sensors, address the advantages of using MXenes and their variants as detecting materials for gathering different types of data, and attempt to clarify the design principles and operation of related MXene-based sensors, such as nucleotide detection, Single nucleotide detectors, Cancer theranostics, Biosensing capabilities, Gliotoxin detection, SARS-COV-2 nucleocapsid detection, electrochemical sensors, visual sensors, and humidity sensors. Finally, we examine the major issues and prospects for MXene-based materials used in various sensing applications.


Subject(s)
COVID-19 , Humans , Biomarkers , Nucleotides , SARS-CoV-2
18.
Sustainability (Switzerland) ; 15(3), 2023.
Article in English | Scopus | ID: covidwho-2258288

ABSTRACT

There is an ever-growing need in several industries to disinfect or sanitise products (i.e., to reduce or eliminate pathogenic microorganisms from their surfaces). Gaseous ozone has been widely applied for this purpose, particularly during the era of the COVID-19 pandemic. However, the large-scale deployment of this technology usually involves a manually-operated chamber, into which articles are loaded and subsequently unloaded after treatment—a batch process. Although the development of large-scale, automated and continuous ozonation equipment has hardly been reported in the literature, this has tremendous potential for industries seeking to decontaminate certain articles/products in a rapid and effective manner. In this paper, an overview of the design and implementation considerations for such an undertaking is evaluated. By presenting a case study for a developed automated system for clothing and personal protective equipment (PPE) disinfection, we provide key data regarding the automation procedure/design's considerations, risks, material compatibility, safety, sustainability and process economics. Our analysis shows that the transfer time for garments between successive chambers and the agility of the sliding doors are crucial to achieving the desired throughput. The automated system is capable of effectively treating (20 ppm ozone for 4 min) 20,000 garments within an 8-h shift, based on a transfer time of 2 min and a sliding door speed of 0.4 m/s. The flexibility of the system allows for variation in the concentration or exposure time, depending on the contamination level and the consequent decontamination efficiency desired. This flexibility significantly limits the degradation of the material during treatment. A return on investment of 47% is estimated for this novel system. © 2023 by the authors.

19.
Sustainability ; 15(5):4547, 2023.
Article in English | ProQuest Central | ID: covidwho-2287243

ABSTRACT

The source apportionment of pollutants is the key to preventing and controlling the pollution caused by heavy metals in soils. The aim of this study was to investigate the main sources of heavy metals in the soils of black shale areas in western Zhejiang, China. Based on geostatistical spatial analysis, this research employed positive matrix factorization (PMF) for the source apportionment of heavy metals in paddy soil. The results showed that contaminated arable soils were concentrated in the western and southern study areas. At least five major sources of heavy metals were screened in this study: natural sources (39.66%), traffic emissions (32.85%), industrial emissions (9.23%), agricultural activities (9.17%), and mining (9.10%). To be specific, Cd was mainly from mining;As originated from agricultural inputs such as fertilizers and pesticides;and Hg, as an industrial pollutant, was transported by atmospheric deposition in the study area. The accumulation of Pb, Zn, and Cu was mainly influenced by natural sources and anthropogenic sources, i.e., traffic emissions, while that of Cr and Ni was controlled by natural sources.

20.
International Journal on Advanced Science, Engineering and Information Technology ; 13(1):276-282, 2023.
Article in English | Scopus | ID: covidwho-2279779

ABSTRACT

Airborne microorganisms must be controlled, especially during the COVID-19 pandemic, to prevent infectious diseases. This research was conducted to prepare a clean room and eliminate infectious pathogens. This study studied a 36-watt UV C commercial lamp to examine its effectiveness in controlling airborne microorganisms in rooms at Universitas Indonesia. The germicide effect of lamp (100 mJ/cm2) predicted by the UV-C test card could be achieved at a distance of 2 to 3 meter after exposure for 60 minutes. UVC's effectiveness as a germicide was also tested on bacteria, yeast, and mold. No germicides were observed in A. parasiticus and C. lunata after being exposed to the UV-C light at 1 to 2 meters distance for 60 minutes. The germicides UV-C lamps were also applied in examined rooms. Active and passive sampling methods measured airborne microorganisms before and after the treatment of UV-C lamp. The lowest germicide effect of UV-C lamp was 37.66% in the collaboration laboratory, and the highest was 86.12% obtained in seminar room at Department of Biology. Many factors, such as the type of group of microorganisms, air circulation, and equipment in the room, influence the germicide effect of UV-C lamp. Based on existing microorganism populations, the examined indoor air has good quality under 1,000 CFU/m3 © IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License

SELECTION OF CITATIONS
SEARCH DETAIL